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LMU Motivation | Challenges in survey research

* Time, monetary, and human resources vs. predicting future outcomes short-notice
* Pre-testing & pilot studies

e Hard-to-survey populations

* Nonresponse and interview fatigue

* Sensitive topics

- LLMs to the rescue?
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Idea | Use characteristics of LLMs

o

1. LLMs aretrained on human-generated text data
—> potentially reflecting survey population attitudes/behavior /(m}\

WWW
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Idea | Use characteristics of LLMs

o

2. Outputis conditional on training data AND prompt input

| voted for...

Harris

T
i ruimp
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P (predicted word | context)

| am a Republican.
| voted for...

Trump

Harr
arirls i

4

banana
W
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Idea | Use LLMs to simulate survey respondents

)

o

- Synthetic samples:

1. Provide LLM with relevant individual-level contextual
information

2. Prompt LLM to respond to survey questions from
individual’s perspective
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Good Idea!? | Use LLMs to simulate survey respondents

o

Out of One, Many: Using Language Models
to Simulate Human Samples

Lisa P. Argyle" ', Ethan C. Busby', Nancy Fulda?,
Joshua R. Gubler ', Christopher Rytting? and David Wingate?

Language models trained on media diets can predict
public opinion

Eric Chu *t, Jacob Andreas!, Stephen Ansolabehere?, and Deb Roy'

Al-Augmented Surveys: Leveraging Large Language
Models and Surveys for Opinion Prediction*

Junsol Kim Byungkyu Lee’
Department of Sociology Department of Sociology
University of Chicago New York University
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The rise of synthetic Synthetictesers Use Cases v Science - Tutorials - Pricing - About (2
respondents in
market research: User research.
e e e somewilfskert Without the
A users.

Run your user-and market research

Rethinking The Science of Prediction

Al PERSONA GENERATOR

Rendering Human

Granularity

Create Al-powered personas automatically

Generate buyer, competitor and employee personas
with Al Persona Generator

Aaru simulates entire populations to

predict the world's events. Welcome

to the new age of decision
dominance. Try for free Book a demo
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Bad Idea!? | Use LLMs to simulate survey respondents

MARCH 22,2024 | 5MIN READ

Can Al Replace Human Research Participants?
These Scientists See Risks

Several recent proposals for using Al to generate research data could save time
and effort but at a cost

BY CHRIS STOKEL-WALKER

Published on Share
11 March 2024 ¥ in

Al polling company defends wrong
predictions on the US election

ﬂ Diego Mendoza

Nov 6, 2024, 9:26pm GMT+1 TECH POLITICS NORTH AMERICA

Synthetic respondents are the
homoeopathy of market
research

*

[l Nik Samoylov
' .
6 gc Director
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Bad Idea!? | Use LLMs to simulate survey respondents

o

Synthetic Replacements for Human Survey Data?
The Perils of Large Language Models

James Bisbee'”, Joshua D. Clinton, Cassy Dorft, Brenton Kenkel and Jennifer M. Larson

Whose Opinions Do Language Models Reflect?

Shibani Santurkar! Esin Durmus! Faisal Ladhak? Cinoo Lee' Percy Liang! Tatsunori Hashimoto '

Questioning the Survey Responses of Large Language Models

Ricardo Dominguez-Olmedo Moritz Hardt Celestine Mendler-Diinner
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LMU Problem | Generalizability?

« Biased LLM output: stereotypes, political attitudes,

KWWW)\ WEIRD* perspectives
x * One potential reason: unrepresentative training data

« prevalence of native-language training data
« political and social structure &
public opinion dynamics
» digital divide: target population <
population reflected in training data

—> challenges validity
—> risks reinforcing biases in research, politics, society
=>» Need to test LLM-synthetic samples in different contexts

*Western, Educated, Industrialized, Rich, Democratic 10
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LMU Research Gaps

« Comparative studies based on country-level promptingvs.
individual-level prompting only single-country studies

* Biasesrelated to prompt language or content?

* “Predicting the past” vs. future outcomes

=» Test LLMs’ predictive performance ...

—> across national and linguistic contexts based on /ndividual-level prompts
= with limited individual-level information (feasibility of repurposing survey data)
—> for futureoutcomes

11
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—> Can LLMs predict the aggregate results of futureelections?

- How does LLMs’ predictive performance differ across countries and
languages?

- How does LLMs’ predictive performance differ depending on the
information providedin the prompt?

- Are there differences in performance between LLMs?

12
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Test Case | Vote choice in the 2024 EU elections

Vote choice - popularitem in public opinion research:
* real-world relevance
* challenging to predict = with vs. without LLMs?
* much-discussed in (online) research & society = covered by training data?

» correlates with factors potentially limiting generalizability of U.S.-based findings
EU elections

« covering several different populations, party systems, languages, ...

e future outcome at time of data collection

13



LUDWIG-
MAXIMILIANS-
UNIVERSITAT
MUNCHEN

IMU Research Design | Experimental dimensions

2. Prompt Content

3. Prompt Language
attitudinal English native

ST

Vote Choice 14
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Research Design | Data

EU-27: DE, FR, IE, PL, SE, SK

Prompt English; German, French, Polish, Swedish, Slovak
Languages

Eurobarometer 99.4 (May/June 2023)

Voting-eligible participants living in EU member states
(n=26,047)

Prompt Demographics:
ELGELIGEI age, gender, education, occupation, class, urbanity

Attitudes:
political interest, ideological left-right self-placement,

attitude towards EU integration, trustin EU

o

15
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country age gender education class occupation urbanity ideology interest trust_eu

Austria 48 female secondary lower middle working large city center-left not at all not to trust the European Union
Austria 41 female university middle working rural area center-left moderately not to trust the European Union
Austria 57 male vocational working working large city in the middle very to trust the European Union
Austria 81 female vocational middle retired large city strongly left very to trust the European Union
Austria 43 female university middle working large city strongly right very to trust the European Union
Austria 26 female vocational lower middle working large city strongly right moderately to trust the European Union

prompt_en_full = paste@("The year is 2024. You are a voting-eligible citizen of an EU-member state
living in ", country,

. The parties competing in the 2024 elections to the European Parliament are ",
parties_country_random,

, and several smaller parties. You are
years old. You are ", gender,

. You have a ", education,

education. Socio-economically, you are
class. You are ", occupation,

. You live in a ", urbanity,

. You are ", interest,

interested in politics. Ideologically, you are
. You ", integration_decisions,

. You tend ", trust_eu,

. Will you vote in the 2024 elections to the European Parliament, and if so, for
which party? Use the information above to make as good a prediction as possible, and keep your answer as
short as possible, if possible only 'No' or the name of the party you would predict."),

» age,

"

, Class,

" "
n

" "

, ideology,

< prompt_en_full

The year is 2024. You are a voting-eligible citizen of an EU-member state living in Austria. The parties competing in the 2024 elections to the Euro...
The year is 2024. You are a voting-eligible citizen of an EU-member state living in Austria. The parties competing in the 2024 elections to the Euro...
The year is 2024. You are a voting-eligible citizen of an EU-member state living in Austria. The parties competing in the 2024 elections to the Euro...
The year is 2024. You are a voting-eligible citizen of an EU-member state living in Austria. The parties competing in the 2024 elections to the Euro...
The year is 2024. You are a voting-eligible citizen of an EU-member state living in Austria. The parties competing in the 2024 elections to the Euro...

The year is 2024. You are a voting-eligible citizen of an EU-member state living in Austria. The parties competing in the 2024 elections to the Euro...
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Research Design | Prompt design

The yearis 2024. You are a voting-eligible citizen of an EU member state
living in Germany. The parties competing in the 2024 elections to the
European Parliament are CDU/CSU, SPD, Griine, FDP, Linke, AfD, Freie
Wahler, BSW, Volt, and several smaller parties. You are 28 years old. You
are female. You have a university education. Economically, you are
upper-middle class. You are working. You live in a big city. You are very
interested in politics. Ideologically, you are center-left. You think that
more decisions should be taken at the EU-level. You tend to trust the
European Union. Will you vote in the 2024 elections to the European
parliament, and if so, for which party? Use the information above to make
as good a prediction as possible, and keep your answer as short as
possible, if possible only “No” or the name of the party you would predict.

Example prompt. Variables bold. Attitudinal information underiined.
17
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Prompt LLMs with

personas

output_en_at_full <- rgpt(
prompt_role_var = EB994_EN_AT$role,
prompt_content_var = EB994_EN_AT$prompt_en_full,
param_seed = ,
id_var = EB994_EN_ATS$uniqid,
param_output_type = "complete”,
param_model = "gpt-4-turbo”,
param_max_tokens = 40,
param_temperature =

param_top_p = 1,

param_n = 1,

param_stop = ,
param_presence_penalty = 0,
param_frequency_penalty =

)

completions_en_at_full <- output_en_at_full[[1]]

metadata_en_at_full<- output_en_at_full[[2]]

Kleinberg, B. (2024). rgpt3: Making requests from R to the GPT AP/ (Version 1.0) [Computer software].
https://doi.org/10.5281 /zenod0.7327667

Data collection: June 2024 18
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— Microsoft Azure A Search resources, sen

Home > Azure Al services

Azure Al services | Azure OpenAl =

Azure Al services

£ Search X &« —|— Create ﬁ Manage dele
. Create
dé® Overview - :
. | Filter for any field... |
Prom pt I—LMS Wlth ‘- Hugging Face Q' Search models, datasets, users... # Models ~ Datasets [ Spaces @ Posts ' Docs (7 Enterprise Pricing ~= 0

personas

« meta-llama/Llama-3.1-8B-Instruct @ Olike 3.72k Follow o Metallama 30.8k

[  Text Generation # Transformers & Safetensors (O PyTorch @& 8languages llama facebook meta llama-3  conversational @ text-generation-inference

@ Inference Endpoints Y arxiv:2204.05149 ® License: llama3.1

# Modelcard - Filesand versions ¢ Community i & Trainv 7 Deploy~ [mEVESUFNREN]

2 Edit model card

Downloads last month \/V\/\/\/\v./\
% You need to agree to share your contact information to access this model 6,266,653

The information you provide will be collected, stored, processed and shared in accordance with the Meta Privacy,

Policy. £ Safetensors Modelsize 8.03Bparams  Tensortype BF16 7

19
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Research Design | Analysis

Compare predictions

to election results

Weight output with survey weights
Aggregate per-country analysis:
difference between prediction and election results
Distinguish turnout vs. party vote shares
Dimensions of comparison:
« Societal coverage = countries: region (social & political
contexts, digital divide), language family
 Linguistic coverage = prompt language: English vs. native
language
 Attitudinal coverage - prompt content: Demographic
information only vs. added attitudinal information

20
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LMU Results | Can LLMs predict the aggregate results of future electionsj?

Turnout
» predicted (avg.): 83%
 actual (avg.): 49%; higher variation
Turnout (Actual) Diff. Turnout (prop. points) Turnout (Predicted)

0.75 _ ]

0.50 . . ‘

0.25 ‘

0.00

Full, English prompt o 21



LUDWIG-

LMU |#ssse || Results | Can LLMs predict the aggregate results of future elections

MUNCHEN

Party vote shares
e 11/27 winners correct
* avg.ranks correct: 8% (median: 0)

 avg. differences: 7-15 percentage points
AT BEBGCY CZDEDK EE EL ES FI FRHRHU IE IT LT LU LV MT NL PL PT RO SE SI SK

Winner
(correct)
Value

1.00

Party Ranks l 0.75
(prop. correct) 0.50
0.25

0.00

Avg. Abs. Diff. Vote Shares
(prop. points, reversed)

Note: Average absolute differences in vote shares: higher values correspond to better predictive performance. 22
Example: an average absolute difference of 5 percentage points (0.05) would be displayed as 0.95.

Full, English prompt
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Results | Can LLMs predict the aggregate results of future elections

Party vote shares
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Results | How does predictive performance differ across countries?

o

Turnout Turnout - Actual * Predicted = Compulsory Voting
* better for countries with % .
high actual turnout o .

* compulsoryvotingnot & :

icti PL
relevant for predictions [

NL °
Fl °

SK ®
IT .

SE °
S °

CcZz °

ES °

DK °

CY °

AT °

RO °

HU ®
IE .

DE °

FR ®

BE
MT .

LU —

0% 25% 50% 75% 100%
Full, English prompt 24
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A B
European Region Il West | North [l South [l East Native Lang. [/ Romance = Germanic =~ Uralic [l Baltic Il Slavic
Turnout & party vote shares 0% 0o
* better for Western —
countries with more g 0% 40%
dominant languages 3 20 20%
e worse for Eastern E » I 1 |
European countries with &
i -20% -20%
SlaVIC Ianguages HR LT LV EEPTEL PLBGNL FI SK IT SE SI CZESDKCY ATROHU IE DEFRMTLUBE HRLT LVEEPTEL PLBGNL FI SK IT SE SI CZESDKCY ATROHU IE DEFRMTLUBE

a15%

10% 10%
) || I I I I ) | | I I
0% I

BGROLT MTLV IE CZSKHUEL IT LUPTHRFRDK FI NL ESDEBE AT PL EECY SE SI

15%

Avg. Abs. Diff. Vote Share ( points )@

BGROLTMTLV IE CZSKHUEL IT LUPTHRFRDK FI NL ES DE BE AT PL EECY SE S

Full, English prompt 25
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Results | How does predictive performance differ across languagesk

o

Turnout Prompt language M English © Native

« worse when prompted in

] 0 40%
native language -
* nodifference ]
(already bad) in PL o . .
Party vote shares % oE eR E PL SE SK
26

* better when promptedin
Full prompt

N W
(@) [e)]
2 0

Diff. Turnout (points
S
~

o
o=

English (DE, SE)
* slightly worse for FR, PL

10%

5%

Avg. Diff. Vote Share (points)

0%
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Results |
Does predictive performance depend on information in the prompt?

Turnout & party vote shares

even worse with only

demographic information £
* regardless of prompt

language
lower variance in vote
share differences
—> systematically off?

A

1N
O
\

Diff. Turnout (points)

AT BE BG CY CZ DE DK EE EL ES FI FR HR HU IE IT LT LU LV MT NL PL PT RO SE SI SK

—
O
\

WII I -l-lI-ll i l.|I|

Avg. Abs. Diff. Vote Share (points) @

—
S
®

Difference demographics only vs. full English prompt 27



LUDWIG-
MAXIMILIANS-
UNIVERSITAT
MUNCHEN

Results | Are these problems LLM-specific?

o

LLaMa 3.1: similar patterns as GPT-4-Turbo

« Overall/Country: Even higher overestimations and bigger biases (again Eastern European / Slavic
countries) for turnout, smaller for vote shares = bias generalizable

* Prompt language: Even poorer predictive performance with native language prompt = limited
multilingual capacities

* Prompt content: Even worse predictions with demographic-only prompt

* Higher shares of missing predictions

Mistral 7B: unable to complete task
o “Difficult to say with certainty”

* Not following instruction to keep answer concise = responses cut off
* More missing predictions with demographic-only prompt

28
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Summary | Just because you can, doesn’t mean you should

... but can you even?
LLM-based predictions of aggregate results of the 2024 European elections fail:

overestimate turnout

unable to accurately predict the winner, rank ordering, or individual party vote shares
especially off for Eastern European countries and countries with native Slavic languages
especially off given only socio-demographic information about individual voters

29
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Summary | Just because you can, doesn’t mean you should

o

... but can you even? = Possible improvements:

» considering country-specific factors in prompting: prompt variables associated with vote choice
(if available in survey data)

* building more sophisticated forecasting models (likely voters ?)
e using pre- & post-election panel as baseline
- secondary data not available pre-election!

« considering country-specific factors in forecasting:
» electoral systems & thresholds
« party system fragmentation
* electoral volatility

e strategic voting

30
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Implications | Survey’s ain’t dead yet

o

* (Generalpurpose / off-the-shelf) LLMs were not made for predicting specific public opinion!
« Performance of LLMs is dependent on training data and prompt

—> Training data temporality:
—> Volatility of population structure & attitudes
—> Tradeoff between recency and detail of human samples needed for personas
—> Training data cutoffs

- Prompt: Need detailed attitudinal information to make somewhat more accurate predictions

—> Questionable feasibility of using LLM-based synthetic samples as a supplement or substitution of
detailed survey data!

31
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Needs: HUMAN PREFERENCES IN LARGE LANGUAGE MODEL LATENT

SPACE: A TECHNICAL ANALYSIS ON THE RELIABILITY OF

Bias 'dent'flcatlon & mltlgatlon: SYNTHETIC DATA IN VOTING OUTCOME PREDICTION

Transparency & diversity

i nm Od e l arc h |teCtU 'es & tra I n i N g d ata Sarah Ball*'3, Simeon Allmendinger*>*, Frauke Kreuter!*>>, and Niklas Kiih1>*
Purpose optimization: Customizing LLMs for
Fine-Tuning Large Language Models to Simulate German Voting Behaviour
* public opinion estimation (Working Paper)
Tobias Holtdirk', Dennis Assenmacher', Arnim Bleier', Claudia Wagner'*
* u n d e r re p res e N te d CO N teXtS 1GESIS - Leibniz Institute for the Social Sciences
2RWTH Aachen

{firstname.lastname } @ gesis.org

Article | Open access | Published: 05 June 2024

Scaling neural machine translation to 200 languages Al-Augmented Surveys: Leveraging Large Language
Models and Surveys for Opinion Prediction®

NLLB Team
e Junsol Kim Byungkyu Lee’
Nature 630, 841-846 (2024) | Cite this article Department of Sociology Dep ent of Sociology
University of Chicago New York University
TrustLLM

Democratize Trustworthy and Efficient Large Language Model Technology for

Europe

32
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As of now ...
» LLMs cannot replace survey data (at most augment it)

» Applicability of LLM-generated survey data is context-dependent
—> outputis biased towards certain (sub-)populations

» Performance likely improves with fine-tuning

» More research needed for identifying & mitigating LLM biases

33
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Questions? Collaborations?
Let’s connect!

| eah von der Heyde
_.Heyde@Ilmu.de
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